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1 Introduction

The efficient solution of large systems of equations Ax = b arising from partial
differential equations remains a challenging problem for nonsymmetric and in-
definite systems. For symmetric positive definite systems, standard multigrid
methods are very efficient solvers due to their optimal complexity (compu-
tational work is proportional to the number of unknowns). However, when
the system is nonsymmetric or highly indefinite, multigrid methods may not
perform as well [2]. Such systems arise in a variety of applications including
linearized Navier-Stokes equations, saddle-point problems, least squares prob-
lems with constraints and systems with an indefinite constitutive tensor arising
as a result of localized damage in solids. Some multilevel methods have been
applied for certain weakly indefinite systems. However, the existing strategies
impose restrictions on the coarse grid, requiring that these grids are sufficiently
fine for the proposed algorithms to converge [3], [4]. For nonsymmetric and
highly indefinite systems, various methods have been proposed, yet a general
and efficient methodology is still an ongoing research area. Previous work [5]
proposes an operator (matrix) dependent black box multigrid scheme for a
single partial differential equation on structured grid problems. [6], [7] utilize
multigrid procedures in the context of normal equations. In [8] the authors
employ a special energy minimization interpolation technique for convection
diffusion problems. Recently, an interesting idea to use a “self correcting”
multigrid has been proposed [9], [10]. This technique finds the algebraically
smooth error components unresolved by multigrid when applied to the ho-
mogeneous problem Ax = 0 with a random initial guess, and adjusts the
coarsening process accordingly. Other approaches include a straight forward
application of the multigrid method as a preconditioner to Krylov iterative
solvers [11], [12], [13]. However, convergence depends on the type of multigrid
method used and the spectrum of the preconditioned system [1], [13], [14].
Consequently, [14] and [15] proposed to “remove” the smallest eigenvalues of
the preconditioned linear system by shifting them. This involves computations
of the smallest eigenvalues which sometimes can be expensive.
The method presented here extends the Global Basis (GB) method [16], [17]
and in particular, the Generalized Global Basis (GGB) method [1] when ap-
plied to general nonlinear problems solved by Newton’s method. The GGB
method stabilizes the entire multilevel procedure by constructing an addi-
tional coarse grid correction spanned by the nonconverging and slowly con-
verging eigenmodes of the multilevel iteration. In this sense, the GGB method
fits into the “self-correcting” multigrid methodology. The idea is to filter out
modes that are “non-converging” and “slow-to-converge” and resolve them
on an additional coarse grid. This accelerates the iterative process and yields
rates of convergence similar to the application of the unaccelerated multilevel
method applied to a positive definite system. Consequently, any multilevel
method may be applied to difficult systems, assuming only a small number
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of those eigenmodes need to be filtered. The method can be used as a stand
alone solver or as a preconditioner to Krylov methods.
In this paper we introduce and study two strategies to reduce the setup cost
associated with GGB. Our objective is to reduce the overall CPU time when
GGB is applied to a sequence of linear systems such as those arising from non-
linear problems solved by Newton’s method. Since most of the computational
work is governed by the eigen computations, reuse of eigenspace information
may lead to significant CPU time savings. The first scheme (GGBα), com-
putes only a few eigenvectors at each linear solve and appropriately enriches
an existing prolongation operator. The second strategy is a modified GGB
method termed MGGB. The method predicts whether the previous filter may
be used at the current step or whether a new subspace should be computed.
Both strategies are based on a criterion that measures the maximum principal
angle between subspaces.
The paper is organized as follows. In the following section, a brief introduc-
tion of the GGB method is presented. In Section 3, we motivate the idea of
eigenspace reuse on a simple 1D nonlinear (and nonsymmetric) modified Bratu
problem. In Section 4, we discuss the GGBα and MGGB strategies that em-
ploy those ideas. In Section 6, we study performance of the proposed strategies
on various problems. Finally, we conclude with some remarks in Section 7.

2 Overview of the Generalized Global Basis (GGB) Method

Consider a generic two-level multigrid V-cycle for the solution of linear system
of equations

Ku = f

in which the system matrix K ∈ RN×N is generally nonsymmetric indefinite.
Let S be defined as the smoothing iteration matrix

S = I −M−1K,

with a relaxation procedure M ∈ RN×N and the identity matrix I. Let ν1

and ν2 denote the number of pre- and post- smoothing steps, respectively. If
the error after iteration i is ei = u− ui, then reduction of the error after one
V-cycle is controlled by the multigrid iteration matrix RMG, given as

ei+1 = Sν2TSν1ei = RMGei. (1)

where T ∈ RN×N is the coarse grid correction given by

T = I − P (RKP )−1RK,

with the prolongation operator from the coarse grid to the fine grid P : Rm →
RN , and the restriction operator R : RN → Rm. For symmetric systems the
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restriction operator is usually taken as the transpose of the prolongation op-
erator i.e. R = P T . T is a projector satisfying T = T 2 with a spectral radius
of ρ(T ) = 1. Multilevel methods consist of two major elements: smoothing
and coarse grid correction. When symmetric positive definite (SPD) systems
are considered, classical iterative methods, used as smoothers, eliminate the
oscillatory components of the error leaving the smooth components almost
untouched. This motivates the use of a coarse grid correction, where smooth
components of the error are effectively approximated on a coarser grid. How-
ever, for difficult systems such as indefinite and/or nonsymmetric systems,
smoothing may leave some oscillatory modes untouched, and thus standard
multilevel methods might magnify these modes rather than reducing them [2].
Recently, the Generalized Global Basis (GGB) method for highly indefinite
and nonsymmetric systems has been proposed [1]. The current paper is a di-
rect extension of the GGB method when applied to a sequence of linear solves
generated by Newton’s method. The GGB method [1] is a generalization of the
global basis method [16], [17]. It accelerates (stabilizes) the entire multigrid
procedure in the following way. It first identifies all the troublesome modes of
the applied multigrid method by solving for the largest magnitude eigenvalues
λi of the multigrid iteration matrix in equation (1)

RMGφi = λiφi i = 1, ..., N. (2)

The troublesome modes are the highest eigenvalues that are either not converg-
ing (indefinite) or “slow-to-converge” modes. The non converging eigenvalues
are those that lie outside the unit circle |λi| > 1, and the “slow-to-converge”
are the ones that lie inside the unit circle, however very close to one, i.e.
1− δ < |λi| < 1, for some small positive constant δ. For this purpose, an im-
plicitly restarted Arnoldi method [18] from ARPACK [19] is employed. Next,
based on the computed eigenvalues, say k eigenvalues, the GGB method con-
structs an additional coarse grid correction, with the prolongation operator
spanned by the corresponding eigenvectors

Qf = span {φi}k
i=1 =




| |
φ1 . . . φk

| |




N×k

. (3)

As shown in [1], the additional coarse grid is used as a multigrid filter, elimi-
nating those troublesome modes. Therefore, this method belongs to the class
of “self correcting” multigrid methods, which find the algebraically smooth
error components unresolved by multigrid [9] and [10]. However, as opposed
to [9] and [10] the algebraically smooth error components are obtained directly
from the eigenvalue problem (2). Figure 1 schematically illustrates the archi-
tecture of the method used in the paper. Black circles denote local smoothing
at each level, and GMRES/QMR is an outer accelerator. The GGB cycle is
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used to precondition Krylov methods. We note that other GGB cycles are also

GMRES\QMR

GGB MLML

Direct solve

Smoothing

Fig. 1. Generalized Global Basis (GGB) cycle

possible for nonsymmetric systems (see Figure 2). The overall error reduction
of a single GGB cycle illustrated in Figure 1, without an external accelerator
and one smoothing iteration at each level can be written as

ei+1 = (STS)ν2FGGB(STS)ν1ei = Rν2
MGFGGBRν1

MGe
i,

where STS is the multilevel iteration matrix and ν1, ν2 correspond to the
number of V-cycles. FGGB is the additional projector (filter), given as

FGGB = I −Qf (Q
∗
fKQf )

−1Q∗
fK

where the prolongation operator Qf and the restriction Q∗
f are spanned by

the highest modes of RMG given in (3).

GMRES\QMR

GGBML

(a) GGB filter on the right

GMRES\QMR

GGB ML

(b) GGB filter on the left

Fig. 2. Various GGB cycles for nonsymmetric systems
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3 Motivation

The GGB method is useful for solving very difficult problems such as highly
indefinite and/or nonsymmetric systems that require one linear solve or a se-
quence of linear solves. For the latter, the method is most attractive for prob-
lems with multiple right hand sides such as linear transient problems or shift-
and-invert eigenvalue problems, since the indefinite and “slow-to-converge”
eigenspace given in (2) has to be computed only once at the setup phase and
can later be reused throughout the entire sequence of linear solves. However,
if the method is applied to a sequence of linear solves, for instance, those
that arise from nonlinear problems solved by Newton’s method, then the left
hand side (the Jacobian matrix) as well as the right hand side changes from
one Newton iteration to the other. This results in an eigen computation for
each linear solve in the sequence which may dominate the entire computa-
tional cost. However, if the sequence of Jacobians are slowly changing, then
the eigenspace information can be reused without significantly affecting the
convergence rate of the GGB method. In practice, the total linear solve iter-
ations will sometimes increase but overall CPU time can be reduced due to
savings resulting from reuse of the eigenspace.
In this Section we motivate the idea of eigen reuse and also illustrate aspects
that must be considered in developing a criteria for reuse. To do this, we
consider the following 1D nonlinear boundary value problem on the interval
Ω = [0, 1]





u′′ + αu′ + λeu = 0

u(x = 0) = u(x = 1) = 0
. (4)

The standard “Bratu problem” is obtained for α = 0 [20]. Central difference
discretization on a uniform mesh leads to a set of nonlinear equations

Fi(ui−1, ui, ui+1) = βui+1 + γui−1 − 2ui + λh2eui = 0, i = 1, ..., N (5)

where N is the number of mesh nodes, h is the mesh spacing, β = (1+ αh
2

) and
γ = (1 − αh

2
). Applying Newton’s method to (5) yields a sequence of linear

systems with a Jacobian matrix given by the stencil

tridiag[γ, −2 + λh2eui , β].

We apply a standard two level multigrid method to the sequence of linear
systems. The mesh spacing is doubled to obtain the coarse mesh. Linear in-
terpolation is used to transfer from coarse grid to fine grid Pmg : Rn → RN ,
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and either a full weighting Rfull = 1
2
P T

mg or injection

Rinject =




0 1 0

0 1 0

0 1 0




.

is used for restriction.
Table 1 illustrates the behavior of the standard multigrid method accelerated
by GGB, applied to problem (4). We set λ = 3 and α = 0, with initial guess
u0 = 2sin(πx), which yields a symmetric indefinite Jacobian. One pre- and
post- Gauss-Siedel smoothing iteration is performed on the fine level. The
GGB filter in (3) is constructed out of four eigenvectors. Specifically, Table 1

Table 1
Variation of various quantities of RMG with nonlinear iteration. Problem parame-
ters are N = 315 unknowns, λ = 3 and α = 0.

|λj
1−λj+1

1 |
|λj

1|
‖qj

1−qj+1
1 ‖

‖qj
1‖

θ(qj
1, q

j+1
1 )

Newton iter. MGfull MGinj MGfull MGinj MGfull MGinj

1,2 0.0155 6.3075 0.0754 1.7429 4.0061 58.7466

2,3 0.0173 11.0640 0.0804 1.4135 4.4526 89.9387

3,4 0.0033 0.9579 0.0136 0.0961 0.7723 5.5056

4,5 0.0148 0.8137 0.0711 0.1243 3.4193 7.1258

5,6 0.0007 0.0587 0.0033 1.9976 0.172 5.6059

reports the relative perturbation of the highest eigenvalue and eigenvector. The
last column of the Table indicates the acute angle between the eigenvectors
computed at iteration j and j + 1, respectively. The acute angle θ between
two vectors x1 and x2 is defined as

cos θ =
|xT

1 x2|
‖x1‖2‖x2‖2

. (6)

It can be seen from the Table that the relative perturbation of the eigen-
values as well as the eigenvectors is small, for the case of multigrid with full
weighting. This suggests that reusing the same filter Qf in equation (3) should
be sufficient to obtain satisfactory convergence rates. As a counter example,
multigrid with injection suffers from large relative variations in eigenvectors,
hence one must recompute the eigenspace. In fact, if the initial eigenspace
computed at the first Newton step is reused throughout the linear sequence,
eventually the GGB method fails to converge. That is, eigen reuse must be
done carefully. Further, a measure based on the acute angle between the two
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eigenvectors may detect a large variation in the eigenspace. We also note that
a variation in eigenvalues does not imply changes in eigenmodes and therefore
can not be used as appropriate measure. Nevertheless, the eigenvalues play an
important role determining the number of modes used to construct the filter
(see Section 2).
In the next Section we generalize the acute angle to a set of criteria that
automatically determine when the eigenspace needs to be recomputed.

4 Strategies to reuse eigenspace information

We propose two heuristic strategies that reuse the already computed pro-
longation operator. The first measure is termed GGBα and it is based on
constantly adding new eigen information to the filter, i.e. increasing the pro-
longation space with every Newton iteration. The second is MGGB and it is
based on using the exact same prolongation operator (full reuse). Both strate-
gies rely on the criteria of principal angles between subspaces spanned between
the previous and current prolongation operators. Computation of principal an-
gles between subspaces is performed in many applications, for example data
analysis, random processes, stochastic realization, etc [21].

4.1 The GGBα strategy

The GGBα strategy is based on augmenting new information into a previously
computed prolongation operator, and thus enriching the filter. However, this
enrichment can not be done automatically since the new eigenvectors may be
obtained from a linear combination of the previous eigenvectors causing ill
conditioning of the coarse grid. To be able to safely add the new information,
we develop a measure based on the principal angles between each new eigen-
vector and the previous eigenspace.
In the first Newton iteration a GGB filter is constructed by solving the eigen
problem of the multigrid iteration matrix R1

MG for k non-converging and “slow-
to-converge” eigenvalues

R1
MGq

1
i = λ1

i q
1
i i = 1, .., k.

As the nonlinear iteration proceeds and the next linear system is to be solved,
we propose to compute only t eigenvalues and eigenvectors, such that t < k.
The idea is to enrich the space of a prolongation operator with new eigenvec-
tors. The updated operator after nonlinear iteration j, may be written in the
following way

Qj =
[
Q1, U2, ..., U j

]
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where

Q1 = {q1
1, q

1
2, ..., q

1
k},

and the U matrices are given by

U j = {qj
1, ..., q

j
t} j > 1,

obtained from

Rj
MGq

j
i = λj

iq
j
i i = 1, .., t. (7)

In words, U j contains the eigenvectors computed at the current iteration while
Qj is the accumulated prolongation operator. Thus the idea of the GGBα
method is to always recompute a limited amount of eigen information and to
use it to augment the prolongation operator used in the previous Newton iter-
ation. Of course as the nonlinear iteration proceeds, the prolongation operator
grows increasing the size of the coarse grid.
If the space spanned by the two subspaces Qj and [Qj, U j+1] is nearly the
same then the gain associated with the new information is insignificant.
One way to measure the difference between the two subspaces is to compute
the maximum principal angle between them. Angles between subspaces are
defined in the following way (for more details see [21], [22]). Let F and G
be the column space of Qj and U j+1, respectively, and let s = dim(F) and
t = dim(G) with s ≥ k ≥ t. The principal angles α1, ..., αt ∈ [0, π

2
] between F

and G may be defined recursively for p = 1, ..., t by

cos(αp) = maxv∈G maxw∈F vT w = vT
p wp (8)

subject to

‖v‖ = ‖w‖ = 1, vT vi = 0, wT wi = 0, i = 1, .., p− 1.

The vectors v1, ..., vt and w1, ..., wt are called principal vectors. More explic-
itly, definition (8) follows if the subspaces F and G are orthogonalized, and
rotated such that the inner product between their columns are maximized and
reordered in an ascending order.
In our context the rank of the prolongation Qj is much smaller than the rank
of the multigrid iteration matrix Rj

MG. For this purpose, we choose the Björck-
Golub algorithm [21] to compute the principal angles. This algorithm is based
on a singular value decomposition (SVD). Let the columns of Q̃ ∈ RN×s and
Ũ ∈ RN×t be an orthonormal basis for range(F) and range(G), say computed
by a QR factorization, i.e.,

Qj = Q̃R̃1

U j+1 = ŨR̃2
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where Q̃T Q̃ = Is, ŨT Ũ = It. Further, let

Q̃T Ũ = Z




σ1

. . .

σt




V T 1 ≥ σ1 ≥ ... ≥ σt ≥ 0

be the reduced SVD of Q̃T Ũ where Z ∈ RN×s, V ∈ Rt×t. The principal angles
are given by

αi = arccos(σi) i = 1, ..., t

where 0 ≤ α1 ≤ ... ≤ αt ≤ π
2

and the columns of Q̃Z and ŨV are the principal
directions.
For computational purposes, the GGBα method is then defined by using the
new U j+1 eigenvectors to enrich the space of the prolongation Qj only if all the
principal angles (not only the maximum angle) αi ≥ αcr, where αcr is some
tolerance angle. Considering only the maximum principal angle might lead to
an ill conditioned coarse grid matrix as some vectors in U j+1 might lie in Qj

while others are nearly orthogonal to Qj. Therefore, one should compute an
angle between each new eigenvector qj+1

i ∈ U j+1 and the previous eigenspace
Qj 1 . The computation of the angle between a vector and a subspace can be
simplified in the following way. Define a projection of qj+1

i onto the subspace
Q̃j

yi = Q̃j
(
(Q̃j)T Q̃j

)−1
(Q̃j)T qj+1

i = Q̃j(Q̃j)T qj+1
i i = 1, ..., t. (9)

The cosine of the angle between qj+1
i and Q̃j with relation ‖qj+1

i ‖ = 1 is given
by

cos αi =
|yT

i qj+1
i |

‖yi‖2‖qj+1
i ‖2

=
|
(
Q̃j(Q̃j)T qj+1

i

)T
qj+1
i |

‖Q̃j(Q̃j)T qj+1
i ‖2

=
|
(
(Q̃j)T qj+1

i

)T (
(Q̃j)T qj+1

i

)
|

‖(Q̃j)T qj+1
i ‖2

= ‖(Q̃j)T qj+1
i ‖.

(10)

The GGBα strategy may be very effective if the multigrid iteration matrices
vary significantly from iteration to iteration. Yet, when the eigenspace only
slightly changes, computing t new eigenvectors might not be justified.

1 In fact Q̃j can be used in the GGB method instead of Qj
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4.2 The MGGB strategy

The second strategy, termed MGGB (modified GGB), is based on the full
reuse of a previously computed prolongation operator. That is, using the same
GGB filter for several nonlinear iterations. Again, if the iteration matrices only
slightly changes then full reuse may result in satisfactory convergence rates and
yet the CPU time savings might be significant. On the other hand, automatic
reuse might be unsafe (see section 3). To evaluate whether a new filter has to
be computed or not, we measure how far are the previous eigenvectors (of the
GGB filter) qj

i from being also eigenvectors of the current multigrid iteration
matrix Rj+1

MG. Note that qj
i are computed from (7), while Rj+1

MG denotes the
current operator. This is achieved by employing a standard Rayleigh quotient
estimation, popular in eigen calculations. Thus, the goal of MGGB is to avoid
the exact computation of t new eigenvectors, which was employed by GGBα
strategy. Later, we generalize the standard Rayleigh quotient measure to an
angle between the vector Rj+1

MGq
j
i and the entire filter Qj. This generalization

is important due to the following. First, one can use similar algorithms for
both GGBα and MGGB to compute the angle. Second, the Rayleigh quotient
criteria may be somewhat relaxed since linear combination of eigenvectors
might better capture the behavior.
We now describe the mathematical formulations. A Rayleigh quotient type
measure between the eigenvector qj

i and the multigrid operator Rj+1
MG is given

by
‖Rj+1

MGqi − ρiqi‖2

|ρi| ≤ δ i = 1, ..., k (11)

where ρi is the Rayleigh quotient defined as

ρi =
q∗i R

j+1
MGqi

q∗i qi

, (12)

and δ is some small constant. Using the fact that q∗i qi = 1, (11) can be rewritten
as

‖Rj+1
MGqi −

(
q∗i R

j+1
MGqi

)
qi‖2

|q∗i Rj+1
MGqi|

≤ δ i = 1, ..., k. (13)

Moreover, measure (13) is related to the acute angle (6) between Rj+1
MGqi and

qi in the following way

‖Rj+1
MGqi − ρiqi‖2

|ρi| = tan θi. (14)

This can be seen by writing down the acute angle and substituting the Rayleigh
quotient (12)

cos θi =
|q∗i Rj+1

MGqi|
‖Rj+1

MGqi‖2

=
|ρi|

‖Rj+1
MGqi‖2

.
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So,

cos2 θi =
ρ∗i ρi

‖Rj+1
MGqi‖2

2

=
ρ∗i ρi

‖Rj+1
MGqi‖2

2 − ρ∗i ρi + ρ∗i ρi

Using the relation

‖Rj+1
MGqi − ρiqi‖2

2 = ‖Rj+1
MGqi‖2

2 − ρ∗i ρi.

we arrive at

cos2 θi =
ρ∗i ρi

‖Rj+1
MGqi − ρiqi‖2

2 + ρ∗i ρi

and (14) follows (for more details see [22]).
One can generalize the acute angle θi to an angle between the vector Rj+1

MGqi

and the subspace Qj (as opposed to a single vector), assuming real eigenvec-
tors. Defining a projection of Rj+1

MGqi onto the subspace Qj using equation (9)
and (10), one arrives at,

cosβi =
‖(Qj)T Rj+1

MGqi‖
‖Rj+1

MGqi‖2

.

The square of the cosine is further simplified by,

cos2 βi =
‖(Qj)T Rj+1

MGqi‖2
2

‖Rj+1
MGqi‖2

2

=

(
qT
1 Rj+1

MGqi

)2
+ ... +

(
qT
i Rj+1

MGqi

)2
+ ... +

(
qT
k Rj+1

MGqi

)2

‖Rj+1
MGqi‖2

2

=

(
qT
1 Rj+1

MGqi

)2
+ ... + ρ2

i + ... +
(
qT
k Rj+1

MGqi

)2

‖Rj+1
MGqi‖2

2

.

(15)

Substituting (6) into (15) yields,

cos2 βi =

(
qT
1 Rj+1

MGqi

)2
+ ... + ‖Rj+1

MGqi‖2
2 cos2 θi + ... +

(
qT
k Rj+1

MGqi

)2

‖Rj+1
MGqi‖2

2

=

(
qT
1 Rj+1

MGqi

)2

‖Rj+1
MGqi‖2

2

+ ... + cos2 θi + ... +

(
qT
k Rj+1

MGqi

)2

‖Rj+1
MGqi‖2

2

and since all the terms on the right hand side are greater or equal to zero, we
get the following bound

cos2 βi ≥ cos2 θi =
1

‖Rj+1
MGqi−ρiqi‖2

|ρi| + 1
,

which relates Rayleigh quotient to an angle between subspaces. A new eigenspace
is then recomputed if max{βi} ≥ βcr. Note that the measures proposed for
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the MGGB method assume |λ1| ≥ ... ≥ |λk| ≥ ... ≥ |λN |, which is a drawback
to the method since no measure can take into account flipping in the order of
the eigenvalues and the corresponding eigenvectors. The GGBα would capture
this behavior.
Nevertheless, in most cases where the multigrid iteration matrix only slightly
varies from one iteration to the other, the MGGB strategy is found to be the
most attractive method.

5 Numerical Results

In order to illustrate the behavior of the MGGB and GGBα methods, we
apply the solvers to a 1D modified Bratu problem, 2D nonlinear sail (mem-
brane) problem, 2D steady, thermal-convection flow and 3D chemical vapor
deposition (CVD) reactor. The last problem is the most challenging for the
multigird solvers as different physics is used for modelling the problem.

5.1 1D modified Bratu problem

We apply left preconditioners to GMRES for the solution of the modified Bratu
problem described in (4). Two sweeps of a standard multigrid with restriction
based on full weighting and injection described in Section 3 are used. Results
are given for the GGB method and the corresponding MGGB method. One
pre- and post- Gauss-Siedel smoothing sweep is applied within the multigrid
cycle at the fine level. We don’t consider here the GGBα strategy described
in Section 4. Table 2 shows the convergence of the various preconditioners for
a system of size N = 315. The problem parameters are chosen to be λ = 3
and α = 1.3, with initial guess u0 = 2sin(πx), yielding a nonlinear prob-
lem (4) that is indefinite and nonsymmetric. For the linear solve, we use the

following stopping criteria ‖ri‖2
‖r0‖2 ≤ 10−8, where ri = f −Kui is the residual at

the inner iteration i. The outer iteration is terminated when ‖F (u)‖ ≤ 10−6,
where F (u) denotes the nonlinear residual vector and u is the approximated
solution vector. Results obtained for MGGB methods, use a measure based on
an approximate angle between a subspace and a vector described in Section
(4), with a critical angle for recomputing the GGB filter set to θcr = 20◦.
We choose only 4 modes to construct the filter. In general, all the multigrid
methods maintain the same rate as the problem size increases, i.e. are mesh
independent. Yet, adding the additional GGB operator (with only 4 modes)
cuts in almost half the required number of iterations. It is also clear from
Table 2 that GGB and MGGB with MGfull performs the best. In fact, both
methods have similar convergence rates, yet the prolongation in the case of
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Table 2
Convergence of various preconditioners to GMRES applied to modified Bratu
problems of size 115, 315 and 515, respectively. The problem parameters are set to
λ = 3 and α = 1.3.

Total linear solve iter. Average No. of iter.

Preconditioner N=115 N=315 N=515 N=115 N=315 N=515

MGfull 133 112 102 8.31 8.00 7.84

MGinj 298 265 245 18.62 18.92 18.84

GGB with MGfull 76 59 54 4.75 4.21 4.15

GGB with MGinj 153 140 129 9.56 10.00 9.92

MGGB with MGfull 76 59 54 4.75 4.21 4.15

MGGB with MGinj 161 145 133 10.06 10.35 10.23

MGGB is computed only once at the first iteration and reused. Figure 3 com-
pares the maximum approximate angle θapp = ∠(Qj, Rj+1

MGq
j) and maximum

exact angle θexa = ∠(Qj, qj+1) between a subspace and a vector. For both
MGGB cases the filter Qj is computed only once. The Figure illustrates that
the vector Rj+1

MGq
j we used to obtain the angle θapp is valid when the multigrid

iteration matrix only slightly changes as in the MGfull case.
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Fig. 3. Approximate and exact angle between a subspace and a vector for MGfull

and MGinj iteration matrices (N = 315), respectively.
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5.2 A Sail on nonlinear springs

We study the performance of the GGB filters applied to a 2D sail (membrane)
on a nonlinear bed of springs. The sail has a small crack that is modelled
with softening zones at the tips. The steady governing equation for transverse
displacement u in the domain (x, y) ∈ Ω with boundary Γ is:

∇2u−K(u)u + f = 0 in Ω,

where f is a uniform distribution of wind load acting on the sail and K is a
nonlinear spring given by K(u) = k0u

α where k0 is the material constant (usu-
ally greater than zero). α describes the degree of nonlinearity. The boundary
conditions for the problem are given as

u = 0 on Γ

∂u

∂n
= 0 on s+, s−

s+ and s− denotes the two sides of the crack. A standard Galerkin finite
element discretization produces a system of nonlinear algebraic equations of
the form g(u) = f , that are solved by Newton’s method. For every Newton

iteration j a global tangent stiffness matrix given by Kj
AB = ∂g(u)

∂u
|(u=uj) is

computed. The global tangent stiffness is assembled from local contributions
of the from

kj
ab = sab + (1 + α)k0

(
uh

)α
mab

where sab and mab are the standard stiffness and mass matrices, respectively,
and uh is the averaged approximated displacement at the nodes of the element.
Figure 4a shows the finite element mesh considered. The sail is constrained
all around and a uniform wind load is applied to all the nodes. We use 2460
elements for the model that results in systems of that 1183 unknowns. Details
of the finite element mesh at the tip of the crack are shown in Figure 4b. The
red dashed line illustrates the crack interface. The circles around the crack tips
define the damage regions for which k0 is negative. This causes the tangent
stiffness matrix to become symmetric-indefinite for certain Newton iterations.
We apply two cycles of a smoothed aggregation multilevel method to precon-
dition GMRES(15), similar to two cycles used in GGB. We use two levels
of the aggregation method and one Jacobi smoothing on the fine grid. The
results are obtained for normalized variables k0 = −100 inside the damaged
zones and k0 = 100 otherwise. The damaged region is set to have radius of
3 units. We use α = 2 for the degree of nonlinearity. Figure 5 presents the
normalized displacement of the sail subjected to distributed wind load of 15
units. Table 3 summarizes the convergence behavior of the various precondi-
tioners. We emphasize that only five modes are used by GGB every linear
solve. The last two columns describe the total accumulated modes computed
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and the Newton iteration index in which they were computed. Again, GGB re-
quires the minimum amount of iterations to converge, while both MGGB and
GGBalp performed the best of all the methods in terms of the overall time.
Figure 6 compares the maximum approximate angle θapp = ∠(Qj, Rj+1

MGq
j) and

maximum exact angle θexa = ∠(Qj, qj+1) between a subspace and a vector.
The results show good agrement in particular for the last Newton steps. This
suggest that the approximated angle used by MGGB can effectively detect
large variations in the GGB filter.
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Table 3
CPU time and iteration summary for the cracked sail on nonlinear springs.

CPU time [sec] Linear Iterations Eigenvectors

Precnd. Total Eigensolver Eigen % Total Average Total Itr. comp.

ML 54.7 - - 1889 157.4 - -

GGB 46.8 26.35 56.30 212 17.6 60 1-12

GGBα 37.9 19.73 52.07 280 23.3 13 1-12

MGGB 35.4 12.66 35.76 215 17.9 30 1-5,7
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Fig. 6. Approximate and exact angle between subspace and a vector.

5.3 Thermal-convection flow in a box

In this section we demonstrate the performance of GGB, GGBα and MGGB
methods applied to steady, thermal-convection flow. The governing PDEs are
the following Navier-Stokes with thermal energy equations

Momentum ρ (u · ∇)u−∇ · T− ρg = 0 (16)

Total mass ∇ · (ρu) = 0 (17)

Thermal energy ρĈp (u · ∇) T +∇ · q = 0 (18)

The unknown quantities are u the fluid velocity vector, P the hydrodynamic
pressure and T the temperature. ρ, g, and Ĉp are respectively, the density,
the gravity vector and the specific heat at constant pressure. The Boussinesq
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approximation is used for representing the body force term. The necessary
constitutive equations for T and q are

Stress tensor T = −P I− 2

3
µ (∇ · u) I + µ(∇u +∇uT )

Heat flux q = −κ∇T

where µ is the viscosity and κ is the thermal diffusivity. (16)-(18) are ap-
proximated by a Galerkin Least Squares formulation. The resulting nonlinear
system of equations gives rise to a system of coupled, nonlinear and non-
symmetric algebraic equations. We employ MPSalsa [23], [24] to generate the
system of equations.
To solve the linear systems arising from Newton’s method, we use right precon-
ditioning with a restarted GMRES(m) method. A smooth aggregation multi-
level method [25] implemented in ML package [26] is used for the multigrid
method. This scheme is accelerated with a GGB, GGBα and MGGB methods.
We apply a measure based on the angle between a vector and a subspace (see
Section 4) for the following cases. In the GGBα method the angle is used to
determine whether the new computed eigenvector is needed to enrich the pro-
longation. In all examples we compute two new eigenvectors every nonlinear
iteration. If θi > 5◦ the new eigenvector is added. In MGGB we use a maximum
approximate angle which is used to predict whether the entire prolongation
should be recomputed. If θ > 20◦ a new filter is computed. The approximate
angle is computed between the previous prolongation Qj and the approxi-
mate vector Rj+1

MGq
j
1 where qj

1 ∈ Qj correspond to the highest eigenvalue. We
employ LAPACK subroutines [27] to compute the maximum principal angle.
The angle is computed numerically by first obtaining an orthogonal basis (QR
factorization based on Househoulder triangularization) and second using an
SVD type approach (see Section 4 for more details).
Due to nonsymmetry our algebraic multigrid experience with smoothed aggre-
gation shows that the best performance is obtained when piecewise constants
are used as grid interpolants (unsmoothed aggregation). We also apply two
cycles of the aggregation method to precondition GMRES in order to have a
fair comparison to the GGB cycle (see Figure 1). For all problems, one pre-
and post- ILU(0) smoothing iteration is applied on each level, excluding the
coarse one. On the coarsest level a direct solve is applied.
The eigensolver used for GGB [1], GGBα and MGGB methods is the im-
plicitly restarted Arnoldi method implemented in ARPACK [19]. We initially
compute ten eigenvectors corresponding to largest magnitude eigenvalues to
construct the cycle illustrated in Figure 1. The accuracy of the eigensolver
is set to 10−4 and the restarted Arnoldi space is set to 50. The tolerance of

the linear solve is set to ‖ri‖2
‖r0‖2 ≤ 10−6. We report results for flow 2D flow in

a box. Tables 4, 5 and 6 illustrate the convergence behavior of the various
preconditioners with GMRES(40) applied to a thermal-convection flow in a
box. A no-slip condition is enforced on all surfaces. A hot temperature is set
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on one side of the box and a cold temperature is set on the other side. We
set Rayleigh number to 1.0× 105 and the Prandtl number to 1.0. The results
are reported in Table 4, Table 5 and Table 6 for 32× 32 elements with 4, 356
unknowns, 128× 128 elements with 66, 564 unknowns and 256× 256 elements
with 264, 196 unknowns, respectively. We apply 3-levels of the aggregation
method from ML [26] to the 32 × 32 box, 4-levels to the 128 × 128 box and
5-levels to the 256 × 256 box. Note that MGGB recomputes the eigenspace
only at certain Newton iterations as indicated in the last column of the Ta-
bles. The computation is based on the angle between a subspace and a vector
described in Section 4.
It is clear from Table 4 that the fastest preconditioner to converge is the
smoothed aggregation multilevel method from ML [26], however the minimum
number of iterations is obtained by the GGB preconditioner. Both MGGB and
GGBα methods converge in almost the same CPU time, yet MGGB requires
fewer iterations. On the 128×128 elements problem illustrated in Table 5, the
MGGB method is the fastest method to converge. GGBα also performs well
computing only two new eigenvectors (except for the first step). As expected,
the GGB method performs the best in terms of iteration count. The perfor-
mance of the preconditioners on the largest problem, presented in Table 6,
are quite interesting. The convergence of ML deteriorates and the number of
iterations and CPU time for convergence is much higher than those obtained
by the GGB family. The best performance in terms of CPU time is obtained
for MGGB. An important observation is that both GGBα and MGGB meth-
ods reduce the amount of work done by the eigensolver compared to the GGB
method.

Table 4
CPU time and iteration summary for thermal-convection flow in 32× 32 box with
4, 356 unknowns. 3-levels of aggregation method is applied

CPU time [sec] Linear Iterations Eigenvectors

Precnd. Total Eigensolver Eigen % Total Average Total Itr. comp.

ML 8.69 - - 180 18.0 - -

GGB 13.88 5.73 41.28 105 10.5 100 1-10

GGBα 10.92 3.02 31.04 163 16.3 14 1-10

MGGB 11.00 2.27 20.63 129 12.9 40 1-4

Figure 7 compares the exact angle θexa = ∠(Qj, qj+1
1 ) with qj+1

1 ∈ U j+1 to the
approximate angle θapp = ∠(Qj, Rj+1

MGq
j
1) with qj

1 ∈ Qj between a subspace and
a vector. We compare the angles for a situation where the GGB filter is com-
puted only once in the first iteration. It can be seen that the approximation
is valid in the region where the multigrid iteration matrices only slightly vary
(Newton iterations six and higher) for the 32 × 32 and 128 × 128 problems.
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Table 5
CPU time and iteration summary for thermal-convection flow in 128 × 128 box
with 66, 564 unknowns. 4-levels of aggregation method is applied

CPU time [sec] Linear Iterations Eigenvectors

Precnd. Total Eigensolver Eigen % Total Average Total Itr. comp.

ML 324.31 - - 825 82.5 - -

GGB 335.30 108.68 32.41 355 35.5 110 1-10

GGBα 326.44 61.85 18.95 456 45.6 13 1-10

MGGB 287.03 37.53 13.07 429 42.9 30 1,2,4

Table 6
CPU time and iteration summary for thermal-convection flow in 256 × 256 box
with 264, 196 unknowns. 5-levels of aggregation method is applied

CPU time [sec] Linear Iterations Eigenvectors

Precnd. Total Eigensolver Eigen % Total Average Total Itr. comp.

ML 4389.14 - - 3873 387.3 - -

GGB 2329.39 777.61 33.38 838 83.8 150 1-10

GGBα 2935.90 288.19 9.82 1741 174.1 15 1-10

MGGB 2172.93 236.80 10.90 1149 114.9 45 1-2,4

Nevertheless, the general behavior is well captured. In the 256× 256 box the
approximated angle match with the exact angle.

5.4 Chemical vapor deposition (CVD) reactor

Finally, we present the convergence of the multigrid solvers applied to a 3D
chemical vapor deposition of silicon in a horizontal rotating disk reactor.
The mathematical model describing the reactor consist of the incompressible
Navier-Stokes equations for a variable-density fluid given in equations (16)-
(18) and a species mass balance equation solved for Ng−1 gas-phases species:

ρ (u · ∇) Yk = ∇ · jk + Wkω̇k for k = 1, .., Ng − 1.

where Yk is the mass fraction of the kth species jk is the flux of species k rel-
ative to the mass averaged velocity u and ω̇k is the molar rate of production
of species k from gas-phase reactions. The nonlinear systems of equations are
generated by MPSalsa [23], [24] (see [28] for detailed problem description).
Due to the chemical reactions, this problem is more challenging to iterative
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solvers as different physics has different character and the stabilization is ap-
plied only to the fluid part.
The problem consist of 8999 hexahedral (eight nodes) elements that corre-
sponds to a problem size of 87, 400 unknowns. Each node contains five flow
variables and three chemical variables. We use GMRES(40) to accelerate the
solvers. We apply 4-levels of aggregation from ML [26] (unsmoothed aggrega-
tion). On the fine level we use one symmetric gauss-seidel smoothing iteration
while on the rest (excluding the coarsest grid) we smooth with an ilu(0). A di-
rect solve is applied on the coarse grid. The GGB filter is constructed from only
10 modes. We use similar measures for GGBα and MGGB as for the thermal-
convection problem. The tolerance of the linear solve is set to ‖ri‖2

‖r0‖2 ≤ 10−6.
The convergence results are reported in Table 7. It is shown that for this prob-
lem GGB enhances the aggregation method both in terms of iterations and
overall CPU time. We note that even though MGGB requires more iterations
to converge compared to GGB, the savings in eigensolver calculations makes
it significantly faster than the other methods considered. Thus at the end we
find MGGB to be the most attractive variant of GGB.
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Table 7
CPU time and iteration summary for CVD reactor with 87, 400 unknowns. 4-levels
of aggregation method is applied

CPU time [sec] Linear Iterations Eigenvectors

Precnd. Total Eigensolver Eigen % Total Average Total Itr. comp.

ML 7173.19 - - 1461 243.50 - -

GGB 5502.57 1263.90 22.96 654 109 60 1-6

GGBα 6065.17 688.4 11.35 866 144.33 13 1-3

MGGB 5111.75 633.5 12.39 689 114.83 30 1-3

6 Conclusions

The Generalized Global Basis (GGB) method [1] provides robustness to mul-
tilevel methods applied to difficult systems (indefinite and nonsymmetric).
The efficiency of the method hinges on the highest eigenmodes computations.
We study two heuristic strategies to accelerate the GGB method applied to
nonlinear problems. Both strategies, GGBα and MGGB, reuse the previously
computed eigenspace based on the angle between a subspace and a vector. Nu-
merical examples clearly show that MGGB performs the best of the methods
considered and provides significant time savings.
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